IDENTITAS TRIGONOMETRI

Nama : Meidianti Sherli Rahmi

Kelas : X-MIPA 3

Absen :17

Matematika Wajib, SMAN 63 Jakarta 

 IDENTITAS TRIGONOMETRI

A. PENGERTIAN IDENTITAS TRIGONOMETRI 

Identitas  trigonometri adalah suatu relasi atau kalimat terbuka yang memuat fungsi-fungsi trigonometri dan yang bernilai benar untuk setiap penggantian variabel dengan konstanta anggota domain fungsinya. Domainnya sering tidak dinyatakan secara eksplisit. Jika demikian maka umumnya yang dimaksud adalah himpunan bilangan real. Namun dalam trigonometri identitas yang memuat fungsi tangens, kotangens, sekans dan kosekans domain himpunan bilangan real ini sering menimbulkan masalah ketakhinggaan. Karena itu maka dalam hal tersebut, meskipun tidak dinyatakan secara eksplisit, maka syarat terjadinya fungsi tersebut merupakan starat yang perlu diperhitungkan.













Kebenaran suatu relasi atau suatu kalimat terbuka sebagai suatu identitas perlu diverifikasi atau dibuktikan berdasar aturan atau rumus dasar yang mendahuluinya.

Identitas trigonometri menyatakan hubungan dari suatu fungsi trigonometri dengan fungsi trigonometri lainnya. Sebuah identitas trigonometri dapat ditunjukkan kebenarannya dengan tiga cara.

Cara pertama, dimulai dengan menyederhanakan ruas kiri menggunakan identitas sebelumnya sampai menjadi bentuk yang sama dengan ruas kanan. Cara kedua, mengubah dan menyederhanakan ruas kanan sampai menjadi bentuk yang sama dengan ruas kiri. Cara ketiga, mengubah baik ruas kiri maupun ruas kanan ke dalam bentuk yang sama.

Identitas trigonometri berguna untuk:

  • Menyederhakan persamaan yang rumit
  • Menuliskan suatu fungsi dalam bentuk fungsi lainnya
  • Membuktikan identitas lain
  • Menyelesaikan persamaan trigonometri.

Persamaan identitas trigonometri:







Perhatikan gambar segitiga siku-sku dibawah ini :














Secara sistematis persamaan phytagoras pada segitiga siku-siku dapat ditulis dengan :




Secara matematis, persamaa hubungan trigonometri pada segitiga siku-siku dapat ditulis dengan :














B. MEMBUKTIKAN KEBENARAN IDENTITAS

Ada tiga pilihan pembuktian identitas, yaitu: Menggunakan rumus-rumus atau identitas-identitas yang telah dibuktikan kebenarannya.

  • (i) ruas kiri diubah bentuknya sehingga menjadi tepat sama dengan ruas kanan.
  • (ii) Ruas kanan diubah bentuknya sehingga menjadi tepat sama dengan ruas kiri.
  • (iii) Ruas kiri diubah bentuknya menjadi suatu bentuk mlain, ruas kanan diubah menjadi bentuk lain, sehingga kedua bentuk akhir itu sama.

Dua yang pertama merupakan pilihan utama. Secara umum, yang diubah adalah biasanya adalah bentuk yang paling kompleks dibuktikan sama dengan bentuk yang lebih sederhana.

Keberhasilan pembuktian kebenaran suatu identitas memerlukan:

  • (i) Telah dikuasainya relasi, aturan atau rumus-rumus dasar trigonometri dan aljabar.
  • (ii)Telah dikuasainya proses pemfaktoran, penyederhanaan, operasi pada bentuk pecahan dan operasi hitung lainnya serta operasi dasar aljabar.
  • (iii) Pelatihan yang cukup.

Dalam proses pembuktian, selain yang disebutkan pada dua butir pertama di atas, yang sangat penting diperhatikan ialah bahwa (1) perubahan-perubahan bentuk yang dilakukan berorientasi pada tujuan (ruas lain yang dituju). Maksudnya, bentuk-bentuk yang dituju biasanya adalah bentuk atau derajat yang lebih sederhana dan dapat dikondisikan atau “dipaksakan” adanya, dengan penyesuaian bentuk-bentuk lainnya dan (2) selain menggunakan hubungan antara sekans dan tangens, kosekans dan kotangens, fungsi-fungsi tangens, kotangens, sekans, dan kosekans juga dapat diubah ke fungsi sinus dan atau kosinus.


C. RUMUS-RUMUS TRIGONOMETRI

  1. Relasi/Rumus Dasar Fungsi Trigonometri
  2. Relasi Kebalikan Relasi Pembagian  Relasi “Pythagoras”
  3. Fungsi Trigonometri Sudut-Sudut Yang Berelasi

Kofungsi:        

Sin      (90 – a) = cos a            

Cos     (90 – a) = sin a              

Tan     (90 – a) = cot a             

Cot      (90 – a) = tan a           

Sec     (90 – a) = csc a             

Csc     (90 – a) = sec a

Sin      (180 – a)o = sin ao                           sin      (180 + a)o = -sin ao

Cos     (180 – a)o = -cos ao                        cos      (180 + a)o = -cos ao

Tan     (180 – a)o = -tan ao                         tan       (180 – a)o = tan ao

Sin      (360 – a)o = -sin ao                        

Sin      (-ao) = -sin ao

Cos     (360 – a)o = cos ao                         

Cos     (-ao) = cos ao

Tan     (360 – a)o = -tan ao                        

Tan     (-ao) = -tan ao


II. RUMUS FUNGSI TRIGONOMETRI DUA SUDUT

1. Rumus Jumlah Dan Rumus Selisih

  • sin(a + b) = sin a cos b + cos a sin b
  • sin(a – b) = sin a cos b – cos a sin b
  • cos(a + b) = cos a cos b – sin a sin b
  • cos(a – b) = cos a cos b + sin a sin b

2. Rumus Sudut Rangkap

sin 2a  = 2 sin a cos b

cos 2a = cos2a – sin2a

            = 1 – 2 sin2a       

            = 2 cos2a – 1


III. RUMUS JUMLAH, SELISIH, DAN HASIL KALI FUNGSI SINUS/KOSINUS

1. Hasil Kali Sinus Dan Kosinus    

2. Jumlah Dan Selieih Sudut

sin a cos b = 1/2(sin(a + b) + sin(a – b))              

sin A + sin B = 2 sin 1/2(A + B) cos 1/2(A+B)

cos a sin b = 1/2(sin(a – b) – sin(a – b))               

sin A – sin B = 2 cos1/2(A–B) sin1/2 (A–B)

cos a cos b = 1/2(cos(a – b) – cos(a – b))             

cos A + cos B = 2 cos 1/2 (A + B)cos1/2(A–B)

sin a sin b = -1/2(cos(a – b)–sin(a–b))         

cos A – cos B = -2 sin 1/2(A – B) sin 1/2(A–B)

Kesulitan dalam “menghafal rumus” disebabkan semuanya hendak dihafalkan satu persatu. Untuk memahami hal-hal “serupa tapi tak sama” yang penting adalah mencari bentuk umum dan perbedaannya.



CONTOH SOAL

1. Buktikan 
   
  Jawab : 


2. Buktikan 1 + cot2a = csc2a
     
     Jawab : 

3. Buktikan  

 
     Jawab : 



4. Buktikan 

   
     Jawab : 



5. Buktikan tan x sin x + cos x = sec x

    Jawab : 



Daftar Pustaka :

  • https://maths.id/pembuktian-identitas-trigonometri
  • https://www.dosenpendidikan.co.id/identitas-trigonometri/
  • https://www.matematrick.com/2016/02/rumus-identitas-trigonometri.html?m=1
  • https://www.kompas.com/skola/read/2020/10/28/161024869/rumus-identitas-trigonometri

Comments

Popular posts from this blog

FUNGSI: KUADRAT, RASIONAL, IRASIONAL

SISTEM PERSAMAAN KUADRAT-KUADRAT DAN BEBERAPA CONTOH SOALNYA

SAYA SENANG SEKOLAH DI SMAN 63 JAKARTA